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Summary 

 

Integrase (IN) is one of the most important enzymes in the replication 

of the HIV-1 virus, as it integrates viral DNA (vDNA) into the genome of the 

host cells. However, recent studies have suggested a new surprising role of 

IN in HIV-1 maturation. If IN is inhibited either by mutations or by allosteric 

integrase inhibitors (ALLINIs), viral ribonucleoprotein complexes (vRNPs)  

are often eccentrically localized outside of the capsid (CA). Such viral 

particles are non-infectious and are blocked at an early stage of the reverse 

transcription in the target cells, as a result of premature degradation of IN 

and viral RNA (vRNA) genome, together with the spatial separation of 

reverse transcriptase (RT) from vRNA.  

IN directly binds the vRNA genome in virions by its surface exposed 

lysine residues, exhibiting a distinct preference for selected vRNA structural 

elements. In this way, IN provides nucleation points by bridging separate 

RNA molecules, promoting the effective compaction of vRNPs. These 

interactions then ensure the proper packaging of vRNPs inside the CA.  

Even though the mechanism of action of ALLINIs, an emerging class of 

anti-HIV drugs, is still not fully understood, it seems that they mostly act by 

blocking the IN-vRNA interaction, which results in aberrant non-infectious 

particles. 

This non-catalytic role of IN enables the understanding of the HIV-1 

maturation process in greater detail, which can be successfully used in the 

development of new drugs, such as ALLINIs. However, a lot of research still 

needs to be done, as there is a lot of detail in this IN-driven maturation 

process that still needs to be explained. 

 

Keywords: HIV-1, integrase, maturation, vRNPs, vRNA packaging, IN-

vRNA interactions, ALLINIs 

 

 

 



      

 

 

Sažetak 

Integraza (IN) je jedan od najvažnijih enzima u replikaciji HIV-1 virusa, 

budući da integrira virusnu DNA (vDNA) u genom stanice domaćina. 

Međutim, novije studije su predložile novu, iznenađujuću ulogu IN u 

sazrijevanju HIV-1. Ukoliko je IN inhibirana bilo mutacijama bilo alosteričkim 

inhibitorima integraze (ALLINI-ji), virusni ribonukleoproteinski kompleksi 

(vRNP-ovi) su često acentrično lokalizirani izvan kapside (CA). Ove čestice 

nisu infektivne i blokirane su u ranoj fazi reverzne transkripcije u ciljnim 

stanicama, kao rezultat preuranjene degradacije IN i virusnog RNA (vRNA) 

genoma, zajedno s prostornom odvojenošću reverzne transkriptaze (RT) od 

vRNA.  

IN izravno veže vRNA u virionima putem svojih površinski izloženih 

lizinskih ostataka, pokazujući izrazite preference za određene vRNA 

strukturne elemente. Na ovaj način IN stvara nukleacijske točke, 

premošćujući odvojene RNA molekule i unaprjeđujući učinkovito zbijanje 

RNP-ova. Ove interakcije osiguravaju ispravno pakiranje vRNP-ova unutar 

CA. 

Iako mehanizam djelovanja ALLINI-ja, skupine anti-HIV lijekova u 

nastajanju, još uvijek nije do kraja razjašnjen, čini se da oni većinski djeluju 

blokirajući IN-vRNA interakcije, što rezultira abnormalnim neinfektivnim 

česticama. 

Ova nekatalitička uloga IN omogućava detaljnije shvaćanje procesa 

sazrijevanja HIV-1, što se može uspješno upotrijebiti u razvoju novih 

lijekova poput ALLINI-ja. Međutim, potrebno je provesti još mnogo 

istraživanja jer puno detalja u ovom IN potpomognutom procesu 

sazrijevanja još uvijek mora biti razjašnjeno.    

 

Ključne riječi: HIV-1, integraza, sazrijevanje, vRNP-ovi, pakiranje vRNA, IN-

vRNA interakcije, ALLINI-ji 
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1. Introduction 

The term “human immunodeficiency virus (HIV)” reffers to two species, 

HIV-1 and HIV-2, belonging to the group of retroviruses and subtype of 

lentiviruses, which can cause the acquired immunodeficiency syndrome – 

AIDS [1]. Although these two viruses are related, there are many biological 

differences including their genetic and structural elements, time of 

replication and progression of infection. HIV-1 is responsible for the majority 

of the AIDS related infections, by infecting macrophages, dendritic cells and 

especially CD4+ T-cells. Today, there are around 37 million people globally 

living with HIV-1, and every year almost 2 million people become newly 

infected, with approximately 1 million people dying from AIDS-related 

diseases [2]. As almost 40% of all people living with HIV-1 still does not 

have access to antiretroviral therapy [2], this epidemic poses one of the 

major world health problems. 

HIV-1 is present only in certain body fluids, such as blood, semen, pre-

seminal fluid, rectal fluids, vaginal fluids, and breast milk. For transmission 

to occur, these fluids must come in contact with mucous membranes, which 

are found inside the rectum, vagina, penis, and mouth, or with the damaged 

tissue. Therefore, the virus is primarily transmitted in three ways: sexually, 

vertically from a mother to a child (during pregnancy, birth or 

breastfeeding), and by direct blood contact with an infected persons’ blood 

[3]. The HIV-1 diagnosis is mostly based on tests for HIV-1 antibodies, 

which are detected by using ELISA together with the PCR and Western blot 

techniques. These tests are today inexpensive and extremely accurate [4] 

[5]. 

The majority of the people will, without receiving antiretroviral therapy, 

develop AIDS symptoms in five to ten years after the infection, with the 

average lifespan being eleven years [6].   

The first phase of HIV-1 infection, the acute phase, starts days to weeks 

upon the infection and lasts only 1-2 weeks. The patient experiences 

mononucleosis-like or flu-like symptoms, such as fever, headache, 
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lymphadenopathy, and rash. In this stage, HIV multiplies rapidly, destroying 

the CD4+ T-cells that try to fight off the infection. Because of the nonspecific 

nature of these symptoms, they are often misdiagnosed for the more 

common infectious diseases with the same or similar symptoms [5, 7].  

The second phase is called the chronic HIV infection, but also known as 

asymptomatic HIV infection or clinical latency. During this phase, HIV 

continues to multiply in the body but at the very low levels, as a strong 

immune defense response reduces the number of viral particles in the 

bloodstream at the end of the acute phase. The duration of this stage is 

approximately 8 years, during which the infected person does not experience 

any symptoms, but can spread the virus [5, 7]. 

The third phase is known as AIDS, and it is the final stage of  

HIV- casused disease progression, when the immune system is already very 

weakened and not able to fight off opportunistic infections and cancers. AIDS 

is diagnosed when the concentration of CD4+ T-lymphocytes is lower than 

200 cells per mm3 of blood, making the organism vulnerable to various 

opportunistic infections, such as pneumocystis pneumonia and candidal 

esophagitis, or cancers, such as Kaposi's sarcoma, Burkitt's lymphoma or 

cervical cancer. Without receiving antiretroviral therapy, people with AIDS 

usually survive about three years [5] [7].  

HIV evolved from the simian immunodeficiency virus (SIV), which 

infects primates residing in the west and central Africa. As SIV is a relatively 

weak virus for humans and can be easily defeated by the human immune 

system, the most common explanation is that SIV evolutionary developed 

into HIV to successfully replicate in humans, and therefore secured its 

existence. The mass movement of people in the 20th century helped the 

virus to spread out of Africa, and it was first discovered and described in the 

mid-1980s by two independent research groups under the lead of Robert 

Gallo and Luc Montagnier [8]. 

The first HIV antiretroviral drug was zidovudine, which acts as a reverse 

transcriptase nucleoside inhibitor, approved by the US Federal Drug Agency 

(FDA) in 1987. However, only with the introduction of highly active 
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antiretroviral therapy (HAART) in 1996., which combined reverse 

transcriptase inhibitors with protease inhibitors, the AIDS-related death rates 

started to decline by 60-80 % [9]. Since then, HIV therapy became very 

efficient, causing HIV infection to become a chronic disease that progresses 

into AIDS very slowly. Today, HAART therapy is mostly administered in the 

fixed-dose combination, combining several antiretroviral drugs into one pill. 

These drugs are divided into several classes, depending on which viral 

enzyme or on which viral replication step they act: protease inhibitors, 

coreceptor antagonists, nucleoside and non-nucleoside reverse transcriptase 

inhibitors, fusion inhibitors and integrase inhibitors [10]. 

HIV infected patients can nowadays expect to achieve nearly normal life 

expectancy if taking antiretroviral therapy, which causes long viral 

suppression. However, they need to take lifelong medication, which has its 

side effects, such as causing higher rates of kidney, liver, cardiovascular or 

neurological diseases [11]. This has stimulated further research towards 

enhancing already existing therapy and finding new, even more efficient 

drug targets. One of such targets is the HIV-1 enzyme integrase (IN), for 

which the new research suggests that it is not only involved in the 

integration of HIV-1 genome inside the host cell genome, but also in the 

maturation of new viral particles. Even though it seemed that the replication 

and maturation cycle of HIV-1 is very well observed and known, recent 

discoveries, like in the case of IN, suggest there is still much to learn about 

these processes. This is calling for a need to revise our current knowledge 

about HIV-1 replication and maturation cycles introducing the new research 

data, and to think about the possible future applications of such discoveries, 

especially in the development of new drugs and in the treatment of patients. 
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2. Aim of the thesis 

While the structure and catalytic function of IN are very well known, 

recent studies suggest that viral DNA integration is not the only role of IN, 

but that it is also involved in the viral particle maturation. Allosteric 

integrase inhibitors (ALLINIs), a new promising class of antiretroviral drugs, 

can block the integration steps, but can also block the interactions between 

the IN and viral RNA (vRNA) genome, causing the viral particles to be non-

infectious. This strongly suggests that IN can be crucial for the proper HIV-1 

maturation and its infectivity. The focus of this thesis is to discuss this newly 

found role of IN in virion maturation and how it can be used in the 

development of antiretroviral therapy of HIV-1 patients. 
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3. Discussion 

3.1 Structure and genome of HIV-1 

HIV-1 virion has spherical shape, with a diameter of approximately 100-

150 nm (Figure 1). Two copies of positive single-stranded RNAs, which make 

the HIV-1 genome, are found inside the capsid (CA) made of viral p24 

protein. The RNA molecules are tightly bound to the nucleocapsid (NC) p7 

proteins. Two enzymes needed for the replication and development of the 

virion, reverse transcriptase (RT) and integrase (IN), are also inside the CA. 

The CA is surrounded by a matrix composed of p17 viral protein, which 

ensures the integrity of the virion. The third important enzyme in the 

replication, protease (PR), can be found between the CA and the matrix. The 

matrix is encircled by the viral envelope, mostly composed of host cell 

proteins and a lipid bilayer, as it is a part of the host cell membrane taken 

during the budding process of new viral particles. The envelope glycoprotein 

complex, which is essential for virus attachment to the recpetor on a target 

cell and entry of virus into the cell, consists of glycoprotein 120 (gp120) cap 

and a stem made of three glycoprotein 41 (gp41) molecules [5] [12]. 
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Figure 1: HIV-1 structure. Two RNA molecules bound to the nucleocapsid (NC)  proteins are found 

inside the capsid (CA), which is surrounded by the matrix and the viral envelope containing 

glycoprotein complexes. The enzymes integrase (IN) and reverse transcriptase (RT) are found inside 

the CA, while protease (PR) is outside of the CA. The work of Thomas Splettstoesser 

(www.scistyle.com). 

 

Two genomic RNA molecules are 9749 nucleotides long, containing the 

5’ CAP and 3’ poly-A tail, together with the long terminal repeats (LTR) on 5’ 

and 3’ end (Figure 2). There are three main genes which code for main viral 

structural proteins and enzymes: 

1) Gag gene encodes a polyprotein which is later processed by PR giving 

structural proteins p7 (nucleocapsid protein), p17 (matrix protein) and 

p24 (capsid protein) 

2) Pol gene encodes viral enzymes PR, RT and IN 

3) Env gene encodes the glycoproteins gp120 and gp41  

 

There are two most important regulatory genes: Tat and Rev. Tat gene 

regulates the transcription of viral DNA in the host cell, while Rev regulates 

the gene expression of viral proteins, which will be later explained during the 

description of the HIV-1 replication cycle. The rest of the genes code for the 
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accessory regulatory proteins: vpr, vif, nef, and vpu, which assist in the viral 

replication [5]. 

 

 

Figure 2: HIV-1 genome containing the structural genes (gag, pol, env), regulatory genes (tat and 

rev), and accessory regulatory genes (vpr, vif, nef, vpu). The work of Thomas Splettstoesser 

(www.scistyle.com). 

      

3.2 HIV-1 replication cycle  

The replication cycle of HIV-1 inside CD4+ T-lymphocytes can be 

divided into several steps (Figure 3): 

In the first step, HIV-1 enters the cell by binding to the CD4 receptor on 

the T-cell surface, using the viral envelope glycoprotein gp120. This gp120 - 

CD4 interaction drives the conformational change of the viral envelope, 

enabling gp120 to bind to the T-cell coreceptors, CCR5 and CXCR4. In the 

next step, viral gp41 penetrates the cell membrane and brings the virus 

closer to the cell. When the viral envelope is found in the close proximity to 

the T-cell, it fuses with the cell membrane. Following the fusion of the 

envelope with the membrane, the CA containing two single-stranded vRNA 

and key viral enzymes (RT, IN and PR) is injected in the cell [5].  

In the second step, the HIV-1 CA is uncoated and the RT copies the 

vRNA into the complementary two-stranded viral DNA molecule (vDNA). This 

process is extremely error-prone due to the poor proofreading potential of 

the RT, resulting in the great number of HIV-1 mutations. After the process 

of reverse transcription is completed, the RT degrades viral RNA molecules 

[5] [12]. 
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In the third step, the IN binds to the vDNA, forming a complex known 

as intasome. The intasome is then transferred in the nucleus through a 

nuclear pore, where the IN integrates the vDNA in the host cell chromosome. 

This process will be described in greater detail later in the text. 

In the fourth step, integrated vDNA is transcribed by host RNA II 

polymerase and various cell’s transcription factors, such as NF-kB [13], to 

generate pre-messenger RNA (pre-mRNA), some of which undergo the 

splicing process to give mature mRNA. These mature mRNAs, which contain 

the Rev and Tat gene, are transported from the nucleus to the ribosomes for 

the translation. Produced Tat protein significantly enhances the transcription 

efficiency by recruting cell’s transcription factors, while the Rev protein acts 

as an adaptor that returns to the nucleus and binds longer and larger mRNAs 

that do not undergo the splicing process and can not be alone exported from 

the nucleus, i.e. unspliced genomic RNA (gRNA). When Rev is bound to 

gRNAs, they are successfully exported in the cytoplasm. Some gRNA act as 

complete copies of the viral genome, while others contain genes from which 

new viral structural proteins and enzymes are synthesized [14]. The results 

of gRNA translation are long polypeptide chains containing several viral 

enzymes necessary for further viral development. These enzymes need to be 

cut from the polypeptide chain in the reaction catalyzed by protease to 

become functional [12]. 

In the fifth step, Gag proteins bind to the viral RNA copies and pack 

them into new viral particles that are transported to the cell membrane, 

where the particle binds to the internal side of the membrane. Env 

polyprotein gp160 is then processed by furin, an enzyme inside the Golgi 

Apparatus, giving rise to gp41 and gp120 glycoproteins. These glycoproteins 

are then also transported to the cell membrane, where gp41 acts as an 

anchor for gp120 inside the lipid bilayer. Viral particles then bud from the 

host cell, taking a part of the cell membrane as their viral envelope, thus 

destroying the infected T-lymphocyte. A newly formed virion is still immature 

and not infectious until all Gag polyproteins are processed by PR, forming 

the matrix, CA and NC proteins [12]. When this processing is done, a new 
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HIV-1 viral particle becomes infectious and can attack new cells, repeating 

the replication cycle. 

 

 

 

Figure 3: HIV-1 replication cycle. The cycle starts with the viral entry into the host cell, followed by 

the reverse transcription and integration of the viral cDNA into the host cell genome. Using the host 

cell’s transcription factors, viral genes are transcribed and translated, forming new viral particles, 

which bud from the cell. Taken from Pasternak et al. 2013. [14]. 

      

      

3.3 Integrase structure and catalytic function 

HIV-1 integrase is a 32 kDa protein (288 amino acids) and a member of  

polynucleotidyl transferases family. The protein can be divided into three 

functionaly distinct domains (Figure 4): the N-terminal domain, the catalytic 

core domain, and the C-terminal domain [15]. 
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The N-terminal domain (NTD) is a small dimer that is predominantly 

composed of hydrophobic residues, containing 50 amino acids (residues 1-

50) and a zinc-binding HHCC (a pair of His and Cys residues) motif. Binding 

of zinc to this motif enhances the multimerization of IN into an active 

tetramer form [16], which is required for optimal enzymatic activity. 

On the other hand, the catalytic core domain (CCD) is a spherical dimer 

composed of 162 amino acids (residues 51-212) which contains a highly 

conserved DD(35)E motif with the key residues of the IN active site: Asp64, 

Asp116, and Glu152. These three residues coordinate divalent metal ions of 

magnesium and manganese, which play a key role in the phosphodiester 

cleavage and bond formation reactions that are catalyzed during the 

integration process [15]. 

The C-terminal domain (CTD) is a dimer composed of 75 amino acids 

(residues 213-288) responsible for the non-specific binding of DNA during 

the integration process. It is considerably less conserved among retroviral 

INs than the two other domains [17]. 

 

 

 

Figure 4: Schematic structure of HIV-1 IN, composed of N-terminal domain, catalytic core and C-

terminal domain, each of them having a different role. Taken from Esposito and Craigie 1999. [17] 

      

The role of IN in the vDNA integration is well described and 

documented. First, an IN tetramer binds both vDNA ends forming the 

intasome complex. The intasome then associates with the cellular protein 
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LEDGF/p75, which guides the intasome to the specific chromatin sites and 

enhances the efficiency of the integration process [18, 19].  

The integration reaction occurs in three steps (Figure 5). First, in the 

step known as the 3' end processing, two nucleotides are removed from the 

vDNA 3' ends by a hydrolytic cleavage process, leaving two free 3'-OH 

groups. In the second step, known as the DNA strand transfer, these two 3'-

OH groups are used to perform a nucleophilic attack on a pair of 

phosphodiester bonds separated by 5 bp in the target DNA, forming the 

integration intermediate where the vDNA 3' ends are covalently bound to the 

target DNA. In the final step, cellular enzymes repair the integration 

intermediate by removing the two unpaired nucleotides at each 5' end of the 

vDNA, followed by gap filling and ligation [17, 20]. 

      

 

 

Figure 5: Steps of vDNA integration: 3’ end processing removes the two nucleotides from the vDNA 3’ 

ends and is followed by the DNA strand transfer, in which the two free OH groups attack the 

phosphodiester bond in the target DNA, resulting in the integration intermediate. Finally, cellular 

enzymes repair the intermediate, ensuring the integration of vDNA in the host cell’s genome. Taken 

from Craigie 2012. [20] 



      

12 

 

3.4 Integrase mutations 

Surprisingly, IN mutagenesis screens have shown that various 

mutations in the IN coding region impair not only the integration but also 

other processes involved in HIV-1 replication. Based on the observed 

phenotypes, the IN mutations have been grouped into two general classes: 

class I mutations impair integration, while class II mutations affect reverse 

transcription, particle assembly, and maturation [21]. Some of these class II 

mutations result in severe morphological defects in HIV-1 virions, especially 

during virion maturation. 

The HIV-1 virion maturation starts when PR cuts the long Gag-encoded 

polyproteins. The cleaved NC proteins from Gag polyprotein then bind with 

the vRNA inside the conical CA, thus forming the viral ribonucleoprotein 

complexes (vRNPs). The majority of the proposed virion maturation models 

have therefore been focused on the proteolytic cleavage processes. 

However, in particles with the class II IN mutations, the vRNPs are 

eccentrically localized outside of the CA, leaving it empty. Such particles are 

noninfectious, and are blocked at an early stage of reverse transcription in 

the cells they attack [22]. These findings first revealed that IN has an active 

role in the encapsidation of the vRNA inside the mature conical CA. 

 

3.5 Allosteric integrase inhibitors (ALLINIs) 

The early class of IN inhibitors, IN strand transfer inhibitors (INSTIs), 

inhibit DNA strand transfer activity, as they bind to the intasome at the IN 

active site and remove the terminal deoxyadenosine of vDNA, which would 

otherwise be used by IN to cut specific chromatin sites in the target cell 

[23]. A new class of IN inhibitors which has emerged only recently, allosteric 

IN inhibitors (ALLINIs), function differently. Their ability to inhibit the 

interaction between the IN and the cellular integration cofactor LEDGF/p75 

was long considered to be the main mode of their action. 

However, it was only recently discovered that these compounds also 

affect the late stage of HIV-1 replication, independently of LEDGF/p75 



      

13 

 

inhibition [24]. Similar to some class II IN mutants, viral particles produced 

during ALLINI treatment show very similar morphological defects of vRNPs 

mislocalization outside of the CA (Figure 6). A big fraction of virions that 

were formed under the ALLINI treatment has malformed and non-conical CA, 

while the fraction with the normal closed conical CA is markedly reduced. In 

the majority of these virions, even if the conical CA was assembled, the 

vRNPs were not incorporated inside it, but remained outside, between the CA 

and the viral envelope. IN also tends to be mislocalized, found outside of the 

CA or loosely attached to it. Furthermore, when IN is supplied to such 

virions, some of the malformed CA are replaced with the conical ones [25]. 

 

 

Figure 6: Comparison of viral particles with and without eccentric condensate and conical core. Taken 

from Fontana et al. 2015. [25] 

 

ALLINIs require both the IN and vRNA to induce the formation of vRNP 

eccentric condensate, as viral constructs that cannot express the vRNA did 

not yield a big fraction of eccentric aggregates when ALLINI-treated, 

compared with the normal virions that contain the vRNA [25]. This suggests 

that the disruption of IN-vRNA interaction causes the improper incorporation 

of vRNPs into the CA during the HIV-1 core morphogenesis, which may be 

the mechanism by which ALLINIs adversely affect virion maturation. 
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3.6 Reverse transcription blockade 

As already mentioned, the particles containing eccentric condensate are 

blocked at an early stage of reverse transcription in the target cells, even 

though they have all the components necessary for this process (vRNA 

genome, functional RT and normal NC-RNA levels). In the HIV-1 wild type, 

vRNA and IN cannot be degraded by the host cell metabolism and defense 

pathways because they are found inside the protective CA.  

Since this is not the case in the aberrant eccentric particles, vRNA and IN 

found outside of the CA are prematurely degraded upon the infection of the 

target cells, while RT remains active inside the CA lattice. This premature 

degradation of the vRNA genome, together with the spatial separation of RT 

from the eccentrically localized vRNPs, can explain this transcription defect 

of eccentric particles [26].  

      

3.7 Integrase - vRNA interactions 

Using the CLIP-seq techniques, it was determined that IN is directly 

bound to vRNA in virions (Figure 7) and that this binding is not uniform 

across the viral genome, as IN shows a strong preference for certain vRNA 

elements (Figure 8). For example, IN strongly binds the trans-activation 

response (TAR) element on vRNA, especially the TAR loop and 3-nt bulge of 

TAR [22]. 

 

 

Figure 7: AFM images of purified samples of IN alone, vRNA and IN+vRNA. The zoomed far-right 

image contains arrows pointing to the bright spots corresponding to the IN bound to vRNA. Taken 

from Kessel et al. 2016. [22]. 
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Figure 8: CLIP-Seq Analysis of IN binding sites on the vRNA genome from two independent 

experiments (the highest and middle graph), showing a nearly perfect overlap between IN binding 

sites (lowest graph). Taken from Kessel et al. 2016. [22]. 

 

 The surface exposed lysine residues (K264, K266, K269, K273) in the 

IN C-terminal domain (CTD) are believed to be the major sites of IN-vRNA 

interaction, as substitutions of these residues result in IN failing to bind 

vRNA. These mutations did not detectably affect other known IN functions 

nor processing of HIV-1 polyproteins by the protease, packaging of genomic 

RNA or particle release. However, the particles in which IN-vRNA interactions 

did not occur contained eccentric vRNP condensates and were noninfectious, 

as they fail to undergo the reverse transcription process in the target cells 

[22]. 

It appears that IN provides nucleation points by bridging separate vRNA 

molecules. It does not coat the vRNA, even when it is added in large excess 

- around four subunits of IN bind per one vRNA molecule [22]. In this way, 

IN effectively compacts the two copies of the viral genome, significantly 
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impacting the vRNP architecture, as well as ensuring the incorporation of 

vRNPs within the protective CA [22]. 

Because of these multiple IN-vRNA binding sites, IN multimers can 

efficiently bridge different segments of vRNA, promoting the vRNP 

compaction. Furthermore, the redundancy of structural elements along the 

vRNA on which the IN can bind allows the virus not to depend only on a 

single IN binding to a particular element on vRNA [22].  

When ALLINIs bind to the IN CCD domain, they promote multiple 

protein-protein contacts and induce aberrant IN multimerization (Figure 9). 

The vRNA interacting residues are then shielded by these multimers and 

unable to productively engage vRNA [22]. On the other hand, ALLINI-

induced aberrant IN multimerization does not affect the NC binding on vRNA, 

which means that vRNP condensation takes place idependently, before the 

core formation [26]. 

 

 

Figure 9: A molecular model of the IN tetramer with vRNA and ALLINI binding sites (K264, K266, 

K269, K273) shown as black spheres (left), and with the bound BI-B2 ALLINIs (right). Taken from 

Kessel et al. 2016. [22]. 

 

 

3.8 HIV-1 maturation model 

These discoveries showed that IN initiates vRNP incorporation into the 

CA, followed by the complete CA formation around them. When the 

maturation starts with the Gag-polyprotein processing by the protease [25], 

IN binds to the vRNA and ensures the packaging of the vRNA-NC complex 

inside the conical CA. ALLINIs, as well as some class II IN mutations, induce  
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aberrant IN multimerization which disrupts the binding of this enzyme 

to the vRNA. This leads to vRNPs being localized outside of the CA and to the 

formation of the noninfectious eccentric particles (Figure 10).   

 

 

 

Figure 10: Model for the role of IN in coordinating HIV-1 CA assembly and vRNP incorporation into 

the mature core. Taken from Fontana et al. 2015. [25]. 

 

3.9 ALLINI’s mechanism of action 

When the previously described results of ALLINI treatment of viral 

particles are taken into account, it is clear that ALLINIs are very promising 

new class of IN inhibitors, that could significantly enrich the already existing 

antiretroviral therapy. Even though there is a general idea on how ALLINIs 

work, there is still not a definite proposed mechanism model, like for the 

ALLINI precursors, INSTIs (Figure 11). When INSTIs are bound in the IN 

active site, their chelating moiety interacts with the two magnesium ions by 

moving the 3’-OH end of vDNA away from the active site by approximately 6 

A. The newly formed complex is then stabilized by the halobenzyl moiety, 

which is able to fit within a tight pocket and make the pi-stacking interaction 

with the C16 atom. These interactions lead to the removal of the 3'-OH 
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group from the active site, so it can not attack the target DNA [15]. This 

mechanism of action is shared by the two best known IN inhibitors, 

Raltegravir and Elvitegravir. 

Such a model still cannot be established for ALLINIs, for example BI-D 

and BIB-2 (Figure 12). The mechanism is most likely multimodal, combining 

their previously known ability to disrupt the IN-LEDGF/p75 interaction, 

together with their newly discovered ability to induce the aberrant IN 

multimerization. While this extends our understanding of virion maturation 

and how ALLINIs work, there is still a lot of research needed to be done to 

fully understand these processes. 

 

                     Elvitegravir                                         Raltegravir 

 

 

 

 

 

Figure 11: Structure and activity of Elvitegravir and Raltegravir. A halobenzyl group in a hydrophobic 

pocket (blue circle) and a triad that will chelate the two Mg2+ ions (red circle) are visible. Taken and 

adapted from ChemSpider. 

 

 

Figure 12: Chemical structures of two ALLINIs: BI-D and BIB-2. Taken from Fontana et al. 2015.  

[25] 
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4. Conclusion 

The aforementioned evidence presented from several research groups 

(Kessl et al., Madison et al., Jurado et al., Fontana et al.) strongly suggests 

that HIV-1 IN plays an important role during virion maturation. The 

possibility that IN ensures the proper packaging of vRNPs inside the conical 

CA comes as a very suprising and unexpected discovery, which enables the 

greater understanding of HIV-1 replication and maturation cycles, and 

demands an update of the current information regarding these processes.  

These discoveries also shed a light upon the mechanism of action of 

ALLINIs, which are already being used in clinical trials. These drugs seem to 

act mostly by blocking the IN-vRNA interaction, which is necessary for the 

proper vRNP incorporation inside the CA, causing their eccentric localization 

between the CA and the viral envelope. ALLINIs therefore prove themselves 

as a promising new type of IN inhibitors that could significantly enrich the 

HIV-1 antiretroviral therapy.  

These discoveries have a great perspective to be used not only in the 

development of ALLINIs, but also in the development of many other  HIV-1 

antiretroviral drugs, as a great number of them may follow a similar 

mechanism of action as ALLINIs. This constant development of antiretroviral 

therapy against HIV is extremely important due to a great number of viral 

mutations that arise during the virus replication cycle, which help it to 

acquire resistance against existing drugs. 

Even though this non-catalytic role of IN has a great potential to be 

used in the development of new types of IN inhibitors, a lot of details still 

need to be explained and clarified in the proposed new model of HIV-1 

maturation. Therefore, a lot of further research is required in order to fully 

understand HIV-1 maturation and replication processes and efficiently use 

this knowledge in the development of new anti-HIV drugs. 
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