Multiple Sclerosis and Cancers in Croatia – A Possible Protective Role of the »Mediterranean Diet«

Eris Materljan¹, Mauro Materljan², Branka Materljan³, Helena Vlačić⁴, Zdenka Baričev-Novaković¹ and Juraj Sepič⁵

¹ Department of Family Medicine, School of Medicine, University of Rijeka, Rijeka, Croatia
² Department of Urology, University Hospital Center »Rijeka«, Rijeka, Croatia
³ General Practice, Labin, Croatia
⁴ Istrian Health Centers – Labin Unit, Labin, Croatia
⁵ School of Medicine, University of Rijeka, Rijeka, Croatia

ABSTRACT

Multiple sclerosis (MS) is an autoimmune disease triggered by a combination of genetic and environmental risk factors which are however individually insufficient to provoke the disease. Previous investigations studied the coexistence of cancer in MS patients, and only a few relations between the geographic distribution of MS and that of cancer. The aim of this research was to find an environmental link between the aetiology of MS and cancers in Croatia. Incidence and prevalence of MS in Croatia were compared with the incidence of the most frequent cancer sites: stomach cancer, cancer of the colon and the rectum, pancreatic cancer, lung cancer, cancer of the kidneys and brain cancer. Data for MS were collected from seven population-based epidemiologic studies which used Poser’s diagnostic criteria and reported the number of cases and the magnitude of the studied population. Data for cancers were drawn from the Croatian National Cancer Registry. The analysis was done for single municipalities, grouped in their belonging regions or counties, and separately for the continental and the coastal area. For each rate a 95% confidence interval was calculated. The differences between rates were tested with the chi-square test as well. In addition, MS incidence or prevalence were correlated with the corresponding cancer incidence data. Pearson’s correlation coefficients were used to measure the correlation between both diseases. Calculations were done with the statistical package Statistica V 7.1. and the Smith’s Statistical Package freeware.

In the continental area of Croatia the mean annual incidence (per 100,000 inhabitants) of MS was nearly two folds higher than in the coastal area: 2.1 vs. 1.3 (p=0.0029). The difference was lower when expressed by prevalence: 46.5 vs. 36.7 (p=0.0601). Among the malignant neoplasms, in the continental area significantly higher incidence rates were found for stomach (32.9 vs. 20.8; p=3.14E-14) and lung cancer (55.8 vs. 46.4; p=1.21E-05), whilst colon cancer alone (20.4 vs. 15.7; p=9.44E-05) or colorectal cancer (38.3 vs. 31.6; p=8.18E-05) had a significantly higher incidence in the coastal area. The geographic distribution of MS expressed by incidence was significantly correlated with pancreatic (r=0.62024, df=23, p=0.00094) and lung cancer (r=0.46380, df=23, p=0.01953). This research adds further malignant neoplasms, possibly exposure-related, to the list of diseases with geographic distribution like MS. The similarity of MS distribution with the named malignancies is unlikely to be incidental. MS in Gorski Kotar and Slavonia seems to be associated with a diet rich in meat and fat. A diet rich in fat and meat and poor in vegetables is a risk factor for stomach, colorectum, pancreatic as well as lung cancers. Some authors have documented a possible protective role of the »Mediterranean diet« for the named cancers. Olive oil is the main source of fat in the »Mediterranean diet«. Oleocanthal, a phenolic compound of the extra-virgin olive oil was found to inhibit the cyclooxygenase enzymes which are involved in demyelination and tumorigenesis. We hypothesize that the »Mediterranean diet«, olive oil and particularly oleocanthal, to have a protective role in MS too.

Key words: multiple sclerosis, cancer, epidemiology, incidence, Mediterranean diet, Croatia

Received for publication November 6, 2008
Introduction

Multiple sclerosis (MS) is an autoimmune disease triggered by a combination of genetic and environmental risk factors which are however individually insufficient to provoke the disease before adolescence1–3.

The descriptive epidemiology indicates that Croatia is a zone of moderate to high risk for MS4,5. The distribution of the disease in Croatia is not homogeneous. Gorski Kotar, a mountainous region in the west of the country, is probably a spatial cluster of MS with the highest incidence and prevalence rates ever noted in Croatia (6.5 respectively 173.1 per 100,000 inhabitants)5. The remaining of the country shares lower descriptive epidemiological rates. For incidence they range from 0.5 (Island of Korčula, south Adriatic) to 3.4 per 100,000 inhabitants (Donji Miholjac, eastern Slavonia) and for the prevalence from 10.2 (Island of Korčula, south Adriatic) to 91.4 (Pazin, Istria, north Adriatic)4,5. Such a figure might reflect a consistent environmental influence related to the aetiology of MS in Croatia.

The analytical epidemiologic investigation shows that a fat-rich diet, light colored eyes, a history of optic neuritis, allergy or head trauma and longer indoor permanence are variables with possible biological plausibility in the ethiopathogenesis of MS in the studied areas4,6–10.

The aim of this research was to find an environmental link between the aetiology of MS and cancers in Croatia.

Methods

Data Collection

This research includes seven population-based epidemiologic studies on MS published between 1990 and 2000 in which Poser’s diagnostic criteria were used and the number of MS cases were reported7,11–16.

The survey included the most frequent cancer sites for females and males together: stomach, pancreatic, lung and brain cancer, and cancers of the kidneys colon and rectum. Data of new cancer cases in Croatia for the 1988–1994 period were drawn from the Croatian Cancer Register17.

For the single municipalities (administrative boundaries up to 1992) the mean annual incidence and prevalence rates of MS as well as the mean annual cancer incidence were recalculated from the source data.

Data Analysis and Statistical Analysis

To assess a geographical difference or resemblance between the distribution of MS (expressed through mean annual incidence or prevalence) and malignant neoplasms (expressed through mean annual incidence), the analysis was done for single municipalities, grouped in their belonging regions or counties, and separately for the continental and the coastal area. The average number of inhabitants per year for the observed period was estimated by using the interpolation method18,19 from the Republic of Croatia Census for 1971, 1981, 1991, and 200120–22.

For each rate a 95% confidence interval was calculated using a binomial approximation of the Poisson distribution where the number of cases was less than 100, or the normal approximation for cases ≥ 100 as suggested by Schoenberg23. The differences between rates were tested with the chi-square test as well. In addition, MS incidence or prevalence were correlated with the corresponding cancer incidence data. Pearson’s correlation coefficients were used to measure the correlation between both diseases.

Calculations were done with the statistical package Statistica V 7.1. and the Smith’s Statistical Package freeware (Version 2.5, August 30, 2001; http://www.economics.pomona.edu/StatSite/SSPhtml). Level of statistical significance was set at p<0.05.

Results

MS incidence and prevalence by the single municipality are presented in Figures 1 and 2.

In the continental area of Croatia the mean annual incidence of MS was nearly two folds higher than in the coastal area: 2.1 (95%CI 1.8–2.3) vs. 1.3 (95%CI 1.0–1.7), X²= 8.8587, df=1, p=0.0029. The difference was lower when expressed by prevalence: 46.5 (95%CI 41.4–52.2) vs. 36.7 (95%CI 29.1–45.6), X²=3.5348, df=1; p=0.0601.

Among the malignant neoplasms, in the continental area significantly higher incidence rates were found for stomach 32.9 (95%CI 31.3–34.6) vs. 20.8 (95%CI 18.6–23.2), X²=57.4650, df=1, p=3.14E-14 (Figure 3) and lung cancer 55.8 (95%CI 53.7–58.0) vs. 46.4 (95%CI 43.1–50.0); X²=19.1430; df=1; p=1.21E-05 (Figure 4),
whilst colorectal cancer had a significantly higher incidence in the coastal area 38.3 (95%CI 35.3–41.5) vs. 31.6 (95%CI 30.0–33.3), X2=15.5168, df=1, p=8.18E-05 (Figure 5). No difference in incidence rates were found for pancreatic cancer: 10.2 (95%CI 8.7–12.0) vs. 9.5 (95%CI 8.7–10.5), X2=0.5399, df=1, p=0.4625 (Figure 6).

The correlations between MS incidence and prevalence and cancers incidences are presented in Table 1.

Considering the whole Croatia the geographic distribution of MS incidence was significantly correlated with the incidence of the malignant neoplasms of the pancreas (r=0.62024, p=0.00094) and the lung (r=0.46380, p=0.01953). Whilst the cancer of the pancreas significantly correlated in both continental and coastal areas (r=0.84024, p=0.00032 and r=0.68901, p=0.01320), the cancer of the lung correlated well only in the coastal area (r=0.63173, p=0.02756). Moreover, in the continental area an increasing correlation was found for the colorectum (r=0.73537, p=0.00418), and/or rectum cancer alone (r=0.78841, p=0.00136).
Correlations with MS prevalence implied also the malignant neoplasm of the brain (\(r=0.41473\), \(p=0.03927\)).

Discussion

Only few papers analyze the coexistence of cancer in MS patients\(^{24}\). Malignant neoplasms, associated with MS were found in 4 (1.8%) out of 219 MS patients in Croatia. Three MS patients were affected by colorectal cancer and one with chronic lymphocytic leukaemia\(^{25}\). In comparison, frequencies of cancers as comorbid causes of death ratio among MS deaths in the USA (1990–2001) are higher, 8.5%\(^{26}\).

Only few studies demonstrated a resemblance between geographic distribution of MS and malignancies (cancer of the colon or prostate)\(^{27,28}\) or other diseases (dental caries, Parkinson’s disease)\(^{29,30}\).

To test the possible differences in geographical distribution between MS and cancers in this study we used the incidence rates of both nosologic entities and correlations of malignant neoplasms vs. MS incidence and prevalence. Previous studies confronted the mortality rates\(^{27,28}\).

TABLE 1A

<table>
<thead>
<tr>
<th>Site of the malignant neoplasm</th>
<th>Both areas</th>
<th>Continental area</th>
<th>Coastal area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Correlation coefficient (Critical r = 0.3961)</td>
<td>P</td>
<td>Correlation coefficient (Critical r = 0.5529)</td>
</tr>
<tr>
<td>All sites</td>
<td>0.44589</td>
<td>0.02548</td>
<td>0.29476</td>
</tr>
<tr>
<td>Stomach</td>
<td>0.33038</td>
<td>0.10674</td>
<td>-0.13381</td>
</tr>
<tr>
<td>Colon</td>
<td>0.10922</td>
<td>0.60327</td>
<td>0.39658</td>
</tr>
<tr>
<td>Rectum</td>
<td>0.34071</td>
<td>0.09559</td>
<td>0.78441</td>
</tr>
<tr>
<td>Colorectum</td>
<td>0.30915</td>
<td>0.13265</td>
<td>0.73537</td>
</tr>
<tr>
<td>Pancreas</td>
<td>0.62024</td>
<td>0.00094</td>
<td>0.84024</td>
</tr>
<tr>
<td>Lung</td>
<td>0.46380</td>
<td>0.01953</td>
<td>0.08429</td>
</tr>
<tr>
<td>Kidney</td>
<td>-0.30190</td>
<td>0.14245</td>
<td>-0.03275</td>
</tr>
<tr>
<td>Brain</td>
<td>0.25865</td>
<td>0.21188</td>
<td>0.17839</td>
</tr>
</tbody>
</table>

TABLE 1B

<table>
<thead>
<tr>
<th>Site of the malignant neoplasm</th>
<th>Both areas</th>
<th>Continental area</th>
<th>Coastal area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Correlation coefficient (Critical r = 0.3961)</td>
<td>P</td>
<td>Correlation coefficient (Critical r = 0.5529)</td>
</tr>
<tr>
<td>All sites</td>
<td>0.62030</td>
<td>0.00094</td>
<td>0.66414</td>
</tr>
<tr>
<td>Stomach</td>
<td>0.30596</td>
<td>0.13691</td>
<td>-0.09380</td>
</tr>
<tr>
<td>Colon</td>
<td>0.23138</td>
<td>0.26577</td>
<td>0.56277</td>
</tr>
<tr>
<td>Rectum</td>
<td>0.39013</td>
<td>0.05386</td>
<td>0.42081</td>
</tr>
<tr>
<td>Colorectum</td>
<td>0.43039</td>
<td>0.03175</td>
<td>0.81519</td>
</tr>
<tr>
<td>Pancreas</td>
<td>0.65572</td>
<td>0.00037</td>
<td>0.84904</td>
</tr>
<tr>
<td>Lung</td>
<td>0.54725</td>
<td>0.00464</td>
<td>0.37719</td>
</tr>
<tr>
<td>Kidney</td>
<td>-0.12643</td>
<td>0.54704</td>
<td>0.40188</td>
</tr>
<tr>
<td>Brain</td>
<td>0.41473</td>
<td>0.03927</td>
<td>0.46906</td>
</tr>
</tbody>
</table>
However, the mortality data based on death certificates underestimate the true MS mortality index. MS, besides that, differs from many other diseases in the fact that the majority of patients die in Croatia before the age of 55–60. The use of incidence rate in searching for risk factors of diseases is more proper. Differences of these rates between surveyed areas may reflect a different distribution of genetic and environmental risk factors among the single diseases. The appropriate use of prevalence rate is less indicative, because it is the product of both incidence and disease duration, which depend mainly on success in treatment process.

Considering the environment as the source of potential risk factors for MS, our research is an ecological one. The advantage of our investigation is the homogeneity of the methods used to obtain the rates of MS. The disadvantage is the incompleteness of the geographic distribution, which includes around 20% inhabitants in Croatia (2001). Another defectiveness is the use of crude rates instead of the standardised ones.

However, this research adds further cancers, possibly exposure related, to the list of diseases with geographic distribution like MS. The similarity of MS distribution with the named malignancies is unlikely to be incidental. Although intriguing, it is difficult to interpret the found relationships because of a different association between genetics, lifestyle and diet as well as other environmental risk factors among each disease.

In Europe (and worldwide), MS frequency expressed by incidence and/or prevalence decreases from north to south. Besides genetic susceptibility, a different interplay between environmental risk and/or protective factors in different geographical areas influence such a distribution. Nevertheless, it is difficult to distinguish their causal from their protective role.

The most plausible imputed environmental risk factors for MS are solar ultraviolet radiation and the role of vitamin D, sex hormones, diet and infections.

Croatia is relatively a small country (56,594 km²) with a small number of inhabitants (4,437,460 inhabitants according to 2001 census). Nevertheless, significant regional differences in MS frequency exhibiting a north-south gradient were found. Like MS (Figure 1–2), significant regional frequency differences manifested defined cancers, particularly of the stomach, colorectum and lung. The coastal area. It is possible that genetic isolation and inbreeding have a major role in determining the risk for colorectal cancer in island population.

Some authors have hypothesized a possible protective role of the «Mediterranean diet» against cancers of the stomach, colorectum, pancreas and lung. With the exception of the colorectal cancer, a protective role of the «Mediterranean diet» was proved as well as in Croatia.

The «Mediterranean diet» is characterized by a high consumption of vegetables and fresh fruits, fish, a daily consumption of moderate amounts of alcohol and the use of olive oil as the main source of fat.

Recently, oleocanthal, a phenolic compound of the extra-virgin olive oil, was found to inhibit the cyclooxygenase enzymes COX-1 and COX-2. The later enzyme is presumed to contribute to demyelination as well as to the tumorigenesis and progression of stomach, colorectal, pancreatic, lung and other types of cancers (hepatocellular, oesophageal, head and neck, breast, bladder, cervical, endometrial, skin).

In this regard, the «Mediterranean diet», olive oil and particularly oleocanthal might have a protective role for MS too. This fact, together with other yet unknown envi-
and environmental factors which may influence the coexistence or association of MS with malignant neoplasms.

Future research should better investigate the genetic and environmental factors which may influence the coexistence or association of MS with malignant neoplasms.

E. Materljan

Aldo Negri 20A, 52220 Labin, Croatia
e-mail: erismaterljan@net.hr; eris.materljan@pu.t-com.hr

MULTIPLA SKLEROZA I RAK U HRVATSKOJ – MOGUĆA ZAŠTITNA ULOGA »MEDITERSKIE DIJETE«

S AŽETAK

Multipla sklerozna (MS) je autoimuna bolest potaknuta kombinacijom genetskih i okolišnih čimbenika rizika koji, međutim, pojedinačno nisu dovoljni da provokiraju bolest. Randja su istraživanja proučavala koomorbidnost raka u bolesnika sa MS, a malobrojna istraživanja povezanost između zemljopisne rasprostranjenosti MS i raka. Cilj ovog
istraživanja bio je pronaći povezanost MS i raka sa okolinom u Hrvatskoj. Incidencija i prevalencija MS u Hrvatskoj su upoređene sa incidencijom najučestalijih sijela raka: želudca, kolona i rektuma, gušterače, pluća, bubrega i mozga. Podaci o MS prikupljeni su iz sedam populacijskih epidemioloških istraživanja koji su primijenili Poserove dijagnostičke kriterij, a izvještavali broj oboljelnih i veličinu stanovništva. Podaci za rak preuzeti su iz Registra za rak Hrvatske. Analiza je učinjena za pojedine općine grupirane prema pripadajućim regijama ili županijama, posebno za kontinentalno i priobalno područje. Za svaku pojedinačnu stopu izračunat je 95% interval pouzdanosti. Razlike između stopa testirane su hi-kvadrat testom. Pored toga, incidencija i prevalencija MS su korelirane sa odgovarajućim incidencijama raka primjenom Pearsonov koeficijent korelacije. Izračuni su obavljeni statističkim programima Statistica V 7.1 i Smith’s Statistical Package. U kontinentalnom području Hrvatske prosječna godišnja primjetna rasta incidence MS (na 100.000 stanovnika) bila je gotovo dvostruko veća nego u priobalnom području: 2,1 odnosno 1,3 (p=0,0029). Razlika u prevalenciji bila je manja: 46,5 odnosno 36,7 (p=0,0601). Među zločudnim bolestima u kontinentalnom području manje veću incidenciju pokazivali su rak želudca (32,9 odnosno 20,8, p=3,14E-14) i pluća (55,8 odnosno 46,4, p=1,21E-05), dok je incidencija raka kolona (20,4 prema 15,7, p=9,44E-05) ili kolorektuma (38,3 prema 31,6, p=8,18E-05) bila značajno veća u priobalnom području. Ovo istraživanje pridodaje još neke zločudne bolesti popisu bolestima s zemljopisnom rasprostranjenost sličnoj MS a moguće povezane izlaganjem okolini. Sličnost između rasprostranjenosti MS i navedenih bolesti zasigurno nije slučajna. U Gorskome kotaru i Slavoniji MS je povezana s prehrambom bogatom u mesu i mastima. Prehrana bogata mastima i mesom je čimbenik rizika za rak želudca, kolorektuma, gušterače i pluća. Za navedene zločudne bolesti neki su Autori dokumentirali moguću zaštitnu ulogu »Mediteranske dijete«. U »Mediteranskoj dijete« maslinovo ulje je glavni izvor masnoća. Oleokantalo, polifenolski sastojak ekstra djevičanskog maslinovog ulja inhibira enzime ciklooksigenaze, koji su upućeni u demijelinizacijski proces i tumorigenezi. Predpostavljamo da »Mediteranska dijeta«, maslinovo ulje i napose oleokantalo imaju zaštitnu ulogu i za MS.