IZVORNI ZNANSTVENI ČLANCI

VESNA BARAC-LATAS¹
MIRO MOROVIC²
JURAJ SEPECIC³
NIKOLA MATEJCIC⁴
DANIEL RUKAVINA¹

IMMUNOLOGICAL
REACTIVITY OF
MULTIPLE SCLEROSIS
PATIENTS DURING
PREGNANCY AND
POSTPARTUM PERIOD

SUMMARY Immune response in ten MS patients was studied during pregnancy and puerperal period. Lymphocyte subpopulations in peripheral blood were identified by the rosette forming method. Concentration of immunoglobulins in sera was measured by the radioimmunodiffusion test, and functional reactivity of lymphocytes to polyclonal mitogens by the Hartzman's method. Total and active T lymphocytes showed significantly lower levels during the second and the third trimester of pregnancy. Active T lymphocytes were the lowest in postpartum period. There were no significant changes in percentage of B lymphocytes in pregnant MS patients versus controls. Percentage of total and active T lymphocytes decreased intensively in pregnant MS patients during the relapse. Concentration of immunoglobulins was significantly lower in pregnant MS patients versus healthy nonpregnant women. Concentration of IgG decreased significantly during the third trimester of pregnancy in pregnant MS patients; it was extremely low. Proliferative response to mitogens decreased significantly in pregnant MS patients during the postpartum period in regard to the period of pregnancy. Proliferative response to PHA and ConA measured in pregnant MS patients during the relapse was significantly decreased. It is apparent that gestation is associated with the depression of selective rather than general aspects of cell mediated immunity. Humoral immunity continues to function normally during pregnancy, although opinions about the concentrations of immunoglobulins in the blood of pregnant women are still controversial.
Multiple sclerosis (MS), a demyelinating disease of the central nervous system, typically results in progressive neurological disability\(^1\). The etiology of MS remains enigmatic. Although autoimmunity appears to play an important role in the pathogenesis of inflammatory demyelinating lesions\(^2\), indirect epidemiological evidence suggests that MS may be induced by an exogenous agent in genetically susceptible subjects\(^3\). The risk population for MS includes young adults preferentially women of reproductive age\(^4\).

Virtually all the case reports and reviews published before 1949 concluded that pregnancy affected MS\(^5\). Since than (the 1950's) studies on MS and pregnancy have shown a relative stability of the disease during pregnancy, but a post-partum worsening\(^6,7\). Pregnancy does not appear to be a period of greater risk for relapses, but on the contrary it seems to be a protective event\(^8\). During pregnancy, humoral immunity, unlike some aspects of cell mediated immunity (CMI), generally continues to function normally\(^9,10\). It is becoming apparent that gestation is associated with depression of selective, rather than general aspects of CMI. During pregnancy the levels of hormones and other serum factors that may modulate lymphocyte or macrophage synthesis, activation and/or function shift considerably\(^11\). Many laboratory evidences exist for suppression of the cellular immune response\(^12,13\). The humoral immune response to exogenous antigens and to the fetal proteins remains intact, while levels of IgG fall only slightly\(^14\). The aim of this study is an analysis of some aspects of immune response in MS patients during pregnancy and 6 months of the puerperal period.

**MATERIALS and METHODS**

The clinical course and immunological reactivity were studied in ten clinically definite MS patients during pregnancy and 6 months of postpartum period. Control groups were healthy pregnant and nonpregnant women of the same age. Pregnancy was divided in three trimesters and patients were followed during the postpartum period of six months. Relapse of MS was defined as a worsening or as an occurrence of new symptoms or as signs lasting more than 24 hours and less than two months\(^15\). MS patients and control women were between 20 and 40 years of age.

**Immunological analysis**

Peripheral blood was obtained by venipuncture and collected in plastic tubes containing heparin. Lymphocytes were separated by Ficol-Hepaque density gradient. **Rosette forming test**: lymphocyte subpopulations were detected by method of spontaneous and induced rosette formation (rosette forming cells - RFC) with sheep red blood cells. For RFC (total T lymphocytes) and EAC-RFC (B lymphocytes), we followed the method described by Holm et al\(^17\). Active E-RFC (active T lymphocytes) were determined by our modification\(^18\) of the method described by Smith et al\(^19\). Active T lymphocytes and B lymphocytes were counted immediately after centrifugation (300 xg), while total T lymphocytes were counted 18 hours later. A lymphocyte with 3 or more sheep erythrocytes attached was considered a rosette-forming lymphocyte.

**Immunoglobulins**: the concentration (g/l) of immunoglobulins (IgG, IgA, IgM) in sera of patients was measured by standard single radial immunodiffusion technique (Meloy plates). Diluted immunoglobulins (IgG 1:10; IgA 1:2; IgM was not diluted) were put into RID plates with monospecific antisera toward the corresponding human immunoglobulin and left at room temperature. Diameter of precipitating ring was measured after 50 hours for IgG and IgA and after 80 hours for IgM. Diameters were measured with precision of 0.1 mm RID metre.

**Blastic transformation**: the functional reactivity of lymphocytes stimulated by polyclonal mitogens (PHA, ConA, PWM) was measured by Hartzman's method\(^20\). Each test group was cultured in triplicate. The arithmetic mean of triplicate samples was determined, and the results were expressed as the mean number of counts per minute (cpm)\(^+/-\)SE.

**RESULTS**

**Lymphocyte subpopulations**: the analyses of lymphocyte subpopulations showed significantly lower levels of total and active T lymphocytes during the second and the third trimester of pregnancy, as well as during the postpartal period in MS patients (Figure 1). Active T lymphocytes decreased linearly from the first toward the third trimester of pregnancy and postpartal period. Total T lymphocytes decreased linearly during pregnancy and returned to the normal level in postpartal period. There were no significant changes in the percentage of EAC-RFC in pregnant patients versus healthy pregnant and nonpregnant women. In four out of ten pregnant women relapses appeared during the pregnancy. In one during the first, in two during the second
and in the last during the third trimester of pregnancy (black individual spots in Fig.1). The percentage of total and specially of active T lymphocytes decreased intensively in each of the women during the stage of relapse versus mean value of pregnant women. The percentage of active T lymphocytes decreased statistically significantly versus mean value (twice 2%, once 1% and once 11%). These findings are in line with our earlier reports on lymphocytes subpopulations in peripheral blood of MS patients, measured in the active and in the stable phase of the disease. The percentage of active T lymphocytes was significantly lower versus the mean value of the healthy pregnant women. **Immunoglobulins:** the level of immunoglobulins was significantly lower in healthy pregnant women and in pregnant MS patients versus healthy nonpregnant women. There were no significant differences between the first two groups. During the third trimester of pregnancy the concentration of the IgG decreased significantly in the pregnant MS patients when compared with the mean value of the control group (nonpregnant healthy women). The value of IgG measured twice in pregnant MS patients with relapses in the third trimester was extremely low (Figure 2—black spots).

**Lymphocytes reactivity:** reactivity of lymphocytes to PHA and ConA was significantly suppressed in the group of healthy pregnant women, as it is usually seen. There was no significant difference between the reactivity of lymphocytes in pregnant MS patients and that of the healthy women in control group. In two pregnant MS patients with relapses in the second trimester of pregnancy lymphocyte reactivity to the T polyclonal mitogens (PHA and ConA) decreased. In two other pregnant MS patients with relapses in the first and the third trimester of pregnancy the proliferative response to the polyclonal mitogens was on a normal level.

**DISCUSSION**

Retrospective studies strongly suggest that MS patients enjoy stability during pregnancy, but are at high risk for increased disease activity in the puerperium. There is a general agreement among these authors on the magnitude of the postpartum risk. Between 20% and 40% of MS patients will experience a clinical relapse of the disease during three months after delivery. On one hand, MS is the disease of immunological nature and on the other hand, pregnancy is the period of some immunological changes. It has been shown in the literature that the percentage of total T (CD3+) and B (CD20+) lymphocytes, as well as T lymphocyte subpopulations (CD4+, CD8+) does not change during the pregnancy,
except of the slight decrease of CD4+ cells during the first trimester. The percentage of total T lymphocytes increases during the first 4 months after delivery. But natural killer (NK) cells intensively change during the pregnancy, as well as during the postpartal period. The percentage of NK/K (Leu 7+) cells increases during the first trimester, than decreases during the remaining part of pregnancy, and increases again for 4 months after delivery. In a study of K. Birk et al, the ratio of CD4+ (helper T cells) and CD8+ (suppressor T cells) increases in MS patients during the pregnancy in regard to healthy pregnancy. In these two groups the levels of alpha-fetoprotein, alpha-2-glycoprotein and plasmas protein A were the same. Sepčić et al, observing the clinical course of MS in pregnant young woman, describe favourable course with suitable levels of T and B lymphocytes, immunoglobulins and C3 complement. During the relapse (three during the pregnancy) the levels of T and B lymphocytes, specially of active T lymphocytes, and the reactivity of T lymphocytes to polyclonal mitogens decreased, as well.

In our study the analyses of lymphocyte subpopulations showed significantly lower levels of total and T lymphocytes during the second and the third trimester of pregnancy, as well as during the postpartal period. In four out of ten pregnant women relapses occurred during the pregnancy. In each of them the percentage of total and specially of active T lymphocytes decreased intensively during the stage of relapse. The levels of B lymphocytes did not differ between the groups: pregnant MS patients and control group. The tests that we used enabled us to inspect not only the anatomic (morphologic) background of immunological reactivity (lymphocyte subpopulations), but also the general functional reactivity of these cells (blastic transformation and levels of immunoglobulins). The functional reactivity of lymphocytes measured by proliferative response of maternal lymphocytes to PHA and ConA during the pregnancy of MS patients, remains on a normal level. The functional reactivity of the same cells in healthy pregnant women was significantly decreased, as it was seen in many other studies before, reflecting an abnormality of function rather than a decrease in the number of circulating lymphocytes. Our results show that the proliferative response to mitogens decreases significantly in MS patients during the postpartal period in regard to proliferative response during the period of pregnancy. There are no changes of proliferative response to PWM. Proliferative response to

**Figure 2**
Immunoglobulins in the serum of MS patients during pregnancy and puerperium period compared with the values in healthy pregnant and nonpregnant women.
PHA and ConA measured in two MS patients in the period of relapses was significantly decreased.

Therefore, it is obvious that gestation is associated with depression of selective rather than general aspects of CMI. This is manifested in several ways: a) pregnant women have increased susceptibility to several viral illnesses, b) decreased response to intradermal purified protein derivate injection and increased survival time of skin grafts, c) the incidence and severity of several neoplasms may be increased, d) several autoimmune diseases improve during gestation (rheumatoid arthritis, thyroiditis, systemic lupus erythematosus and multiple sclerosis). The mechanisms of immune suppression in pregnancy are probably multiple and may relate to a combination of fetal, placental and maternal factors.

In our study the concentration of immunoglobulins is significantly decreased during the normal pregnancy, as well as during the postpartal period. The concentration of IgG in MS patients is extremely decreased only during the third trimester of pregnancy. In the postpartal period the concentration of IgG increases to the normal level. The concentration of IgA is variable, but mostly decreased during the pregnancy as in the case of IgM in both the examined groups (healthy pregnant women and pregnant MS patients). Bisset et al. found an intensive decrease of IgM during the third trimester of pregnancy. It is generally accepted that humoral immunity continues to function normally during the pregnancy, although the opinions on the concentrations of immunoglobulins in the blood of pregnant women are still controversial.

In several studies the severity and course of EAE were clearly affected by pregnancy or by administration of certain hormones. The ameliorative affect of pregnancy on MS may be related to the suppressive effect of pregnancy on the development of experimental allergic encephalomyelitis (EAE) in laboratory animals. In the study of AB Keith none of the pregnant rats aborted or resorbed, all of them giving birth to viable offspring. The phenomenon of delayed onset of disease was observed in pregnant rats. In the study of O Abramsky 80% of animals immunized before the pregnancy developed EAE, but the appearance of the disease was delayed and signs were observed only after full term delivery and never during pregnancy as we expected. Abramsky et al demonstrated a beneficial effect of fetal alpha-fetoprotein (APF) on the course of EAE in guinea pigs. Arnason and Richman found that oral contraceptives, particularly those high in estrogens, inhibited EAE in rats.

FIGURE 3
Reactivity of lymphocytes to polyclonal mitogens in MS patients compared with values of healthy pregnant and nonpregnant women.
REFERENCES


IMUNOLoŠKA REAKTIVNOST U ŽENA S MULTIPLOM SKLEROZOM TIJEKOM TRUDNOĆE I POSLJEPORODAČNOG RAZDOBLJA